3. Working with Advanced Metadata (yocto-kernel-cache
)¶
3.1. Overview¶
In addition to supporting configuration fragments and patches, the Yocto Project kernel tools also support rich Metadata that you can use to define complex policies and Board Support Package (BSP) support. The purpose of the Metadata and the tools that manage it is to help you manage the complexity of the configuration and sources used to support multiple BSPs and Linux kernel types.
Kernel Metadata exists in many places. One area in the Yocto Project
Source Repositories is the
yocto-kernel-cache
Git repository. You can find this repository
grouped under the “Yocto Linux Kernel” heading in the
Yocto Project Source Repositories.
Kernel development tools (“kern-tools”) exist also in the Yocto Project
Source Repositories under the “Yocto Linux Kernel” heading in the
yocto-kernel-tools
Git repository. The recipe that builds these
tools is meta/recipes-kernel/kern-tools/kern-tools-native_git.bb
in
the Source Directory (e.g.
poky
).
3.2. Using Kernel Metadata in a Recipe¶
As mentioned in the introduction, the Yocto Project contains kernel
Metadata, which is located in the yocto-kernel-cache
Git repository.
This Metadata defines Board Support Packages (BSPs) that correspond to
definitions in linux-yocto recipes for corresponding BSPs. A BSP
consists of an aggregation of kernel policy and enabled
hardware-specific features. The BSP can be influenced from within the
linux-yocto recipe.
Note
A Linux kernel recipe that contains kernel Metadata (e.g. inherits from the linux-yocto.inc file) is said to be a “linux-yocto style” recipe.
Every linux-yocto style recipe must define the
KMACHINE variable. This
variable is typically set to the same value as the MACHINE
variable,
which is used by BitBake.
However, in some cases, the variable might instead refer to the
underlying platform of the MACHINE
.
Multiple BSPs can reuse the same KMACHINE
name if they are built
using the same BSP description. Multiple Corei7-based BSPs could share
the same “intel-corei7-64” value for KMACHINE
. It is important to
realize that KMACHINE
is just for kernel mapping, while MACHINE
is the machine type within a BSP Layer. Even with this distinction,
however, these two variables can hold the same value. See the BSP
Descriptions section for more information.
Every linux-yocto style recipe must also indicate the Linux kernel source repository branch used to build the Linux kernel. The KBRANCH variable must be set to indicate the branch.
Note
You can use the KBRANCH value to define an alternate branch typically with a machine override as shown here from the meta-yocto-bsp layer:
KBRANCH_edgerouter = "standard/edgerouter"
The linux-yocto style recipes can optionally define the following variables: KERNEL_FEATURES LINUX_KERNEL_TYPE
LINUX_KERNEL_TYPE
defines the kernel type to be used in assembling the configuration. If
you do not specify a LINUX_KERNEL_TYPE
, it defaults to “standard”.
Together with KMACHINE
, LINUX_KERNEL_TYPE
defines the search
arguments used by the kernel tools to find the appropriate description
within the kernel Metadata with which to build out the sources and
configuration. The linux-yocto recipes define “standard”, “tiny”, and
“preempt-rt” kernel types. See the “Kernel Types”
section for more information on kernel types.
During the build, the kern-tools search for the BSP description file
that most closely matches the KMACHINE
and LINUX_KERNEL_TYPE
variables passed in from the recipe. The tools use the first BSP
description it finds that match both variables. If the tools cannot find
a match, they issue a warning.
The tools first search for the KMACHINE
and then for the
LINUX_KERNEL_TYPE
. If the tools cannot find a partial match, they
will use the sources from the KBRANCH
and any configuration
specified in the SRC_URI.
You can use the
KERNEL_FEATURES
variable to include features (configuration fragments, patches, or both)
that are not already included by the KMACHINE
and
LINUX_KERNEL_TYPE
variable combination. For example, to include a
feature specified as “features/netfilter/netfilter.scc”, specify:
KERNEL_FEATURES += “features/netfilter/netfilter.scc” To include a
feature called “cfg/sound.scc” just for the qemux86
machine,
specify: KERNEL_FEATURES_append_qemux86 = ” cfg/sound.scc” The value of
the entries in KERNEL_FEATURES
are dependent on their location
within the kernel Metadata itself. The examples here are taken from the
yocto-kernel-cache
repository. Each branch of this repository
contains “features” and “cfg” subdirectories at the top-level. For more
information, see the “Kernel Metadata
Syntax” section.
3.3. Kernel Metadata Syntax¶
- The kernel Metadata consists of three primary types of files:
scc
1 description files, configuration fragments, and patches. The
scc
files define variables and include or otherwise reference any of
the three file types. The description files are used to aggregate all
types of kernel Metadata into what ultimately describes the sources and
the configuration required to build a Linux kernel tailored to a
specific machine.
The scc
description files are used to define two fundamental types
of kernel Metadata:
Features
Board Support Packages (BSPs)
Features aggregate sources in the form of patches and configuration fragments into a modular reusable unit. You can use features to implement conceptually separate kernel Metadata descriptions such as pure configuration fragments, simple patches, complex features, and kernel types. Kernel types define general kernel features and policy to be reused in the BSPs.
BSPs define hardware-specific features and aggregate them with kernel types to form the final description of what will be assembled and built.
While the kernel Metadata syntax does not enforce any logical separation of configuration fragments, patches, features or kernel types, best practices dictate a logical separation of these types of Metadata. The following Metadata file hierarchy is recommended: base/ bsp/ cfg/ features/ ktypes/ patches/
The bsp
directory contains the BSP
descriptions. The remaining directories all
contain “features”. Separating bsp
from the rest of the structure
aids conceptualizing intended usage.
Use these guidelines to help place your scc
description files within
the structure:
If your file contains only configuration fragments, place the file in the
cfg
directory.If your file contains only source-code fixes, place the file in the
patches
directory.If your file encapsulates a major feature, often combining sources and configurations, place the file in
features
directory.If your file aggregates non-hardware configuration and patches in order to define a base kernel policy or major kernel type to be reused across multiple BSPs, place the file in
ktypes
directory.
These distinctions can easily become blurred - especially as out-of-tree
features slowly merge upstream over time. Also, remember that how the
description files are placed is a purely logical organization and has no
impact on the functionality of the kernel Metadata. There is no impact
because all of cfg
, features
, patches
, and ktypes
,
contain “features” as far as the kernel tools are concerned.
Paths used in kernel Metadata files are relative to base, which is either FILESEXTRAPATHS if you are creating Metadata in recipe-space, or the top level of yocto-kernel-cache if you are creating Metadata outside of the recipe-space.
3.3.1. Configuration¶
The simplest unit of kernel Metadata is the configuration-only feature.
This feature consists of one or more Linux kernel configuration
parameters in a configuration fragment file (.cfg
) and a .scc
file that describes the fragment.
As an example, consider the Symmetric Multi-Processing (SMP) fragment
used with the linux-yocto-4.12
kernel as defined outside of the
recipe space (i.e. yocto-kernel-cache
). This Metadata consists of
two files: smp.scc
and smp.cfg
. You can find these files in the
cfg
directory of the yocto-4.12
branch in the
yocto-kernel-cache
Git repository: cfg/smp.scc: define
KFEATURE_DESCRIPTION “Enable SMP for 32 bit builds” define
KFEATURE_COMPATIBILITY all kconf hardware smp.cfg cfg/smp.cfg:
CONFIG_SMP=y CONFIG_SCHED_SMT=y # Increase default NR_CPUS from 8 to 64
so that platform with # more than 8 processors can be all activated at
boot time CONFIG_NR_CPUS=64 # The following is needed when setting
NR_CPUS to something # greater than 8 on x86 architectures, it should be
automatically # disregarded by Kconfig when using a different arch
CONFIG_X86_BIGSMP=y You can find general information on configuration
fragment files in the “Creating Configuration
Fragments” section.
Within the smp.scc
file, the
KFEATURE_DESCRIPTION
statement provides a short description of the fragment. Higher level
kernel tools use this description.
Also within the smp.scc
file, the kconf
command includes the
actual configuration fragment in an .scc
file, and the “hardware”
keyword identifies the fragment as being hardware enabling, as opposed
to general policy, which would use the “non-hardware” keyword. The
distinction is made for the benefit of the configuration validation
tools, which warn you if a hardware fragment overrides a policy set by a
non-hardware fragment.
Note
The description file can include multiple kconf statements, one per fragment.
As described in the “Validating Configuration” section, you can use the following BitBake command to audit your configuration: $ bitbake linux-yocto -c kernel_configcheck -f
3.3.2. Patches¶
Patch descriptions are very similar to configuration fragment
descriptions, which are described in the previous section. However,
instead of a .cfg
file, these descriptions work with source patches
(i.e. .patch
files).
A typical patch includes a description file and the patch itself. As an
example, consider the build patches used with the linux-yocto-4.12
kernel as defined outside of the recipe space (i.e.
yocto-kernel-cache
). This Metadata consists of several files:
build.scc
and a set of *.patch
files. You can find these files
in the patches/build
directory of the yocto-4.12
branch in the
yocto-kernel-cache
Git repository.
The following listings show the build.scc
file and part of the
modpost-mask-trivial-warnings.patch
file: patches/build/build.scc:
patch arm-serialize-build-targets.patch patch
powerpc-serialize-image-targets.patch patch
kbuild-exclude-meta-directory-from-distclean-processi.patch # applied by
kgit # patch kbuild-add-meta-files-to-the-ignore-li.patch patch
modpost-mask-trivial-warnings.patch patch
menuconfig-check-lxdiaglog.sh-Allow-specification-of.patch
patches/build/modpost-mask-trivial-warnings.patch: From
bd48931bc142bdd104668f3a062a1f22600aae61 Mon Sep 17 00:00:00 2001 From:
Paul Gortmaker <paul.gortmaker@windriver.com> Date: Sun, 25 Jan 2009
17:58:09 -0500 Subject: [PATCH] modpost: mask trivial warnings Newer
HOSTCC will complain about various stdio fcns because … char
*dump_write = NULL, *files_source = NULL; int opt; – 2.10.1 generated
by cgit v0.10.2 at 2017-09-28 15:23:23 (GMT) The description file can
include multiple patch statements where each statement handles a single
patch. In the example build.scc
file, five patch statements exist
for the five patches in the directory.
You can create a typical .patch
file using diff -Nurp
or
git format-patch
commands. For information on how to create patches,
see the “Using ``devtool` to Patch the
Kernel <#using-devtool-to-patch-the-kernel>`__” and “Using Traditional
Kernel Development to Patch the
Kernel”
sections.
3.3.3. Features¶
Features are complex kernel Metadata types that consist of configuration
fragments, patches, and possibly other feature description files. As an
example, consider the following generic listing: features/myfeature.scc
define KFEATURE_DESCRIPTION “Enable myfeature” patch
0001-myfeature-core.patch patch 0002-myfeature-interface.patch include
cfg/myfeature_dependency.scc kconf non-hardware myfeature.cfg This
example shows how the patch
and kconf
commands are used as well
as how an additional feature description file is included with the
include
command.
Typically, features are less granular than configuration fragments and
are more likely than configuration fragments and patches to be the types
of things you want to specify in the KERNEL_FEATURES
variable of the
Linux kernel recipe. See the “Using Kernel Metadata in a
Recipe” section earlier in the
manual.
3.3.4. Kernel Types¶
A kernel type defines a high-level kernel policy by aggregating
non-hardware configuration fragments with patches you want to use when
building a Linux kernel of a specific type (e.g. a real-time kernel).
Syntactically, kernel types are no different than features as described
in the “Features” section. The
LINUX_KERNEL_TYPE
variable in the kernel recipe selects the kernel type. For example, in
the linux-yocto_4.12.bb
kernel recipe found in
poky/meta/recipes-kernel/linux
, a
require directive
includes the poky/meta/recipes-kernel/linux/linux-yocto.inc
file,
which has the following statement that defines the default kernel type:
LINUX_KERNEL_TYPE ??= “standard”
Another example would be the real-time kernel (i.e.
linux-yocto-rt_4.12.bb
). This kernel recipe directly sets the kernel
type as follows: LINUX_KERNEL_TYPE = “preempt-rt”
Note
You can find kernel recipes in the meta/recipes-kernel/linux directory of the Source Directory (e.g. poky/meta/recipes-kernel/linux/linux-yocto_4.12.bb ). See the ” Using Kernel Metadata in a Recipe ” section for more information.
Three kernel types (“standard”, “tiny”, and “preempt-rt”) are supported for Linux Yocto kernels:
“standard”: Includes the generic Linux kernel policy of the Yocto Project linux-yocto kernel recipes. This policy includes, among other things, which file systems, networking options, core kernel features, and debugging and tracing options are supported.
“preempt-rt”: Applies the
PREEMPT_RT
patches and the configuration options required to build a real-time Linux kernel. This kernel type inherits from the “standard” kernel type.“tiny”: Defines a bare minimum configuration meant to serve as a base for very small Linux kernels. The “tiny” kernel type is independent from the “standard” configuration. Although the “tiny” kernel type does not currently include any source changes, it might in the future.
For any given kernel type, the Metadata is defined by the .scc
(e.g.
standard.scc
). Here is a partial listing for the standard.scc
file, which is found in the ktypes/standard
directory of the
yocto-kernel-cache
Git repository: # Include this kernel type
fragment to get the standard features and # configuration values. #
Note: if only the features are desired, but not the configuration # then
this should be included as: # include ktypes/standard/standard.scc nocfg
# if no chained configuration is desired, include it as: # include
ktypes/standard/standard.scc nocfg inherit include ktypes/base/base.scc
branch standard kconf non-hardware standard.cfg include
features/kgdb/kgdb.scc … include cfg/net/ip6_nf.scc include
cfg/net/bridge.scc include cfg/systemd.scc include
features/rfkill/rfkill.scc
As with any .scc
file, a kernel type definition can aggregate other
.scc
files with include
commands. These definitions can also
directly pull in configuration fragments and patches with the kconf
and patch
commands, respectively.
Note
It is not strictly necessary to create a kernel type .scc file. The Board Support Package (BSP) file can implicitly define the kernel type using a define KTYPE myktype line. See the ” BSP Descriptions ” section for more information.
3.3.5. BSP Descriptions¶
BSP descriptions (i.e. *.scc
files) combine kernel types with
hardware-specific features. The hardware-specific Metadata is typically
defined independently in the BSP layer, and then aggregated with each
supported kernel type.
Note
For BSPs supported by the Yocto Project, the BSP description files are located in the bsp directory of the yocto-kernel-cache repository organized under the “Yocto Linux Kernel” heading in the Yocto Project Source Repositories .
This section overviews the BSP description structure, the aggregation concepts, and presents a detailed example using a BSP supported by the Yocto Project (i.e. BeagleBone Board). For complete information on BSP layer file hierarchy, see the Yocto Project Board Support Package (BSP) Developer’s Guide.
3.3.5.1. Overview¶
For simplicity, consider the following root BSP layer description files for the BeagleBone board. These files employ both a structure and naming convention for consistency. The naming convention for the file is as follows: bsp_root_name-kernel_type.scc Here are some example root layer BSP filenames for the BeagleBone Board BSP, which is supported by the Yocto Project: beaglebone-standard.scc beaglebone-preempt-rt.scc Each file uses the root name (i.e “beaglebone”) BSP name followed by the kernel type.
Examine the beaglebone-standard.scc
file: define KMACHINE beaglebone
define KTYPE standard define KARCH arm include
ktypes/standard/standard.scc branch beaglebone include beaglebone.scc #
default policy for standard kernels include
features/latencytop/latencytop.scc include
features/profiling/profiling.scc Every top-level BSP description file
should define the KMACHINE,
KTYPE, and
KARCH variables. These
variables allow the OpenEmbedded build system to identify the
description as meeting the criteria set by the recipe being built. This
example supports the “beaglebone” machine for the “standard” kernel and
the “arm” architecture.
Be aware that a hard link between the KTYPE
variable and a kernel
type description file does not exist. Thus, if you do not have the
kernel type defined in your kernel Metadata as it is here, you only need
to ensure that the
LINUX_KERNEL_TYPE
variable in the kernel recipe and the KTYPE
variable in the BSP
description file match.
To separate your kernel policy from your hardware configuration, you
include a kernel type (ktype
), such as “standard”. In the previous
example, this is done using the following: include
ktypes/standard/standard.scc This file aggregates all the configuration
fragments, patches, and features that make up your standard kernel
policy. See the “Kernel Types” section for more
information.
To aggregate common configurations and features specific to the kernel
for mybsp, use the following: include mybsp.scc You can see that in the
BeagleBone example with the following: include beaglebone.scc For
information on how to break a complete .config
file into the various
configuration fragments, see the “Creating Configuration
Fragments” section.
Finally, if you have any configurations specific to the hardware that
are not in a *.scc
file, you can include them as follows: kconf
hardware mybsp-extra.cfg The BeagleBone example does not include these
types of configurations. However, the Malta 32-bit board does
(“mti-malta32”). Here is the mti-malta32-le-standard.scc
file:
define KMACHINE mti-malta32-le define KMACHINE qemumipsel define KTYPE
standard define KARCH mips include ktypes/standard/standard.scc branch
mti-malta32 include mti-malta32.scc kconf hardware mti-malta32-le.cfg
3.3.5.2. Example¶
Many real-world examples are more complex. Like any other .scc
file,
BSP descriptions can aggregate features. Consider the Minnow BSP
definition given the linux-yocto-4.4
branch of the
yocto-kernel-cache
(i.e.
yocto-kernel-cache/bsp/minnow/minnow.scc
):
Note
Although the Minnow Board BSP is unused, the Metadata remains and is being used here just as an example.
include cfg/x86.scc include features/eg20t/eg20t.scc include cfg/dmaengine.scc include features/power/intel.scc include cfg/efi.scc include features/usb/ehci-hcd.scc include features/usb/ohci-hcd.scc include features/usb/usb-gadgets.scc include features/usb/touchscreen-composite.scc include cfg/timer/hpet.scc include features/leds/leds.scc include features/spi/spidev.scc include features/i2c/i2cdev.scc include features/mei/mei-txe.scc # Earlyprintk and port debug requires 8250 kconf hardware cfg/8250.cfg kconf hardware minnow.cfg kconf hardware minnow-dev.cfg
The minnow.scc
description file includes a hardware configuration
fragment (minnow.cfg
) specific to the Minnow BSP as well as several
more general configuration fragments and features enabling hardware
found on the machine. This minnow.scc
description file is then
included in each of the three “minnow” description files for the
supported kernel types (i.e. “standard”, “preempt-rt”, and “tiny”).
Consider the “minnow” description for the “standard” kernel type (i.e.
minnow-standard.scc
: define KMACHINE minnow define KTYPE standard
define KARCH i386 include ktypes/standard include minnow.scc # Extra
minnow configs above the minimal defined in minnow.scc include
cfg/efi-ext.scc include features/media/media-all.scc include
features/sound/snd_hda_intel.scc # The following should really be in
standard.scc # USB live-image support include cfg/usb-mass-storage.scc
include cfg/boot-live.scc # Basic profiling include
features/latencytop/latencytop.scc include
features/profiling/profiling.scc # Requested drivers that don’t have an
existing scc kconf hardware minnow-drivers-extra.cfg The include
command midway through the file includes the minnow.scc
description
that defines all enabled hardware for the BSP that is common to all
kernel types. Using this command significantly reduces duplication.
Now consider the “minnow” description for the “tiny” kernel type (i.e.
minnow-tiny.scc
): define KMACHINE minnow define KTYPE tiny define
KARCH i386 include ktypes/tiny include minnow.scc As you might expect,
the “tiny” description includes quite a bit less. In fact, it includes
only the minimal policy defined by the “tiny” kernel type and the
hardware-specific configuration required for booting the machine along
with the most basic functionality of the system as defined in the base
“minnow” description file.
Notice again the three critical variables:
KMACHINE,
KTYPE, and
KARCH. Of these variables, only
KTYPE
has changed to specify the “tiny” kernel type.
3.4. Kernel Metadata Location¶
Kernel Metadata always exists outside of the kernel tree either defined in a kernel recipe (recipe-space) or outside of the recipe. Where you choose to define the Metadata depends on what you want to do and how you intend to work. Regardless of where you define the kernel Metadata, the syntax used applies equally.
If you are unfamiliar with the Linux kernel and only wish to apply a configuration and possibly a couple of patches provided to you by others, the recipe-space method is recommended. This method is also a good approach if you are working with Linux kernel sources you do not control or if you just do not want to maintain a Linux kernel Git repository on your own. For partial information on how you can define kernel Metadata in the recipe-space, see the “Modifying an Existing Recipe” section.
Conversely, if you are actively developing a kernel and are already maintaining a Linux kernel Git repository of your own, you might find it more convenient to work with kernel Metadata kept outside the recipe-space. Working with Metadata in this area can make iterative development of the Linux kernel more efficient outside of the BitBake environment.
3.4.1. Recipe-Space Metadata¶
When stored in recipe-space, the kernel Metadata files reside in a
directory hierarchy below
FILESEXTRAPATHS. For
a linux-yocto recipe or for a Linux kernel recipe derived by copying and
modifying
oe-core/meta-skeleton/recipes-kernel/linux/linux-yocto-custom.bb
to
a recipe in your layer, FILESEXTRAPATHS
is typically set to
${
THISDIR}/${
PN}
.
See the “Modifying an Existing
Recipe” section for more information.
Here is an example that shows a trivial tree of kernel Metadata stored in recipe-space within a BSP layer: meta-my_bsp_layer/ `– recipes-kernel `– linux `– linux-yocto |– bsp-standard.scc |– bsp.cfg `– standard.cfg
When the Metadata is stored in recipe-space, you must take steps to
ensure BitBake has the necessary information to decide what files to
fetch and when they need to be fetched again. It is only necessary to
specify the .scc
files on the
SRC_URI. BitBake parses them
and fetches any files referenced in the .scc
files by the
include
, patch
, or kconf
commands. Because of this, it is
necessary to bump the recipe PR
value when changing the content of files not explicitly listed in the
SRC_URI
.
If the BSP description is in recipe space, you cannot simply list the
*.scc
in the SRC_URI
statement. You need to use the following
form from your kernel append file: SRC_URI_append_myplatform = ” \
file://myplatform;type=kmeta;destsuffix=myplatform \ “
3.4.2. Metadata Outside the Recipe-Space¶
When stored outside of the recipe-space, the kernel Metadata files
reside in a separate repository. The OpenEmbedded build system adds the
Metadata to the build as a “type=kmeta” repository through the
SRC_URI variable. As an
example, consider the following SRC_URI
statement from the
linux-yocto_4.12.bb
kernel recipe: SRC_URI =
“git://git.yoctoproject.org/linux-yocto-4.12.git;name=machine;branch=${KBRANCH};
\
git://git.yoctoproject.org/yocto-kernel-cache;type=kmeta;name=meta;branch=yocto-4.12;destsuffix=${KMETA}”
${KMETA}
, in this context, is simply used to name the directory into
which the Git fetcher places the Metadata. This behavior is no different
than any multi-repository SRC_URI
statement used in a recipe (e.g.
see the previous section).
You can keep kernel Metadata in a “kernel-cache”, which is a directory
containing configuration fragments. As with any Metadata kept outside
the recipe-space, you simply need to use the SRC_URI
statement with
the “type=kmeta” attribute. Doing so makes the kernel Metadata available
during the configuration phase.
If you modify the Metadata, you must not forget to update the SRCREV
statements in the kernel’s recipe. In particular, you need to update the
SRCREV_meta
variable to match the commit in the KMETA
branch you
wish to use. Changing the data in these branches and not updating the
SRCREV
statements to match will cause the build to fetch an older
commit.
3.5. Organizing Your Source¶
Many recipes based on the linux-yocto-custom.bb
recipe use Linux
kernel sources that have only a single branch - “master”. This type of
repository structure is fine for linear development supporting a single
machine and architecture. However, if you work with multiple boards and
architectures, a kernel source repository with multiple branches is more
efficient. For example, suppose you need a series of patches for one
board to boot. Sometimes, these patches are works-in-progress or
fundamentally wrong, yet they are still necessary for specific boards.
In these situations, you most likely do not want to include these
patches in every kernel you build (i.e. have the patches as part of the
lone “master” branch). It is situations like these that give rise to
multiple branches used within a Linux kernel sources Git repository.
Repository organization strategies exist that maximize source reuse, remove redundancy, and logically order your changes. This section presents strategies for the following cases:
Encapsulating patches in a feature description and only including the patches in the BSP descriptions of the applicable boards.
Creating a machine branch in your kernel source repository and applying the patches on that branch only.
Creating a feature branch in your kernel source repository and merging that branch into your BSP when needed.
The approach you take is entirely up to you and depends on what works best for your development model.
3.5.1. Encapsulating Patches¶
if you are reusing patches from an external tree and are not working on the patches, you might find the encapsulated feature to be appropriate. Given this scenario, you do not need to create any branches in the source repository. Rather, you just take the static patches you need and encapsulate them within a feature description. Once you have the feature description, you simply include that into the BSP description as described in the “BSP Descriptions” section.
You can find information on how to create patches and BSP descriptions in the “Patches” and “BSP Descriptions” sections.
3.5.2. Machine Branches¶
When you have multiple machines and architectures to support, or you are actively working on board support, it is more efficient to create branches in the repository based on individual machines. Having machine branches allows common source to remain in the “master” branch with any features specific to a machine stored in the appropriate machine branch. This organization method frees you from continually reintegrating your patches into a feature.
Once you have a new branch, you can set up your kernel Metadata to use
the branch a couple different ways. In the recipe, you can specify the
new branch as the KBRANCH
to use for the board as follows: KBRANCH =
“mynewbranch” Another method is to use the branch
command in the BSP
description: mybsp.scc: define KMACHINE mybsp define KTYPE standard
define KARCH i386 include standard.scc branch mynewbranch include
mybsp-hw.scc
If you find yourself with numerous branches, you might consider using a hierarchical branching system similar to what the Yocto Linux Kernel Git repositories use: common/kernel_type/machine
If you had two kernel types, “standard” and “small” for instance, three
machines, and common as mydir
, the branches in your Git repository
might look like this: mydir/base mydir/standard/base
mydir/standard/machine_a mydir/standard/machine_b
mydir/standard/machine_c mydir/small/base mydir/small/machine_a
This organization can help clarify the branch relationships. In this
case, mydir/standard/machine_a
includes everything in mydir/base
and mydir/standard/base
. The “standard” and “small” branches add
sources specific to those kernel types that for whatever reason are not
appropriate for the other branches.
Note
The “base” branches are an artifact of the way Git manages its data internally on the filesystem: Git will not allow you to use mydir/standard and mydir/standard/machine_a because it would have to create a file and a directory named “standard”.
3.5.3. Feature Branches¶
When you are actively developing new features, it can be more efficient
to work with that feature as a branch, rather than as a set of patches
that have to be regularly updated. The Yocto Project Linux kernel tools
provide for this with the git merge
command.
To merge a feature branch into a BSP, insert the git merge
command
after any branch
commands: mybsp.scc: define KMACHINE mybsp define
KTYPE standard define KARCH i386 include standard.scc branch mynewbranch
git merge myfeature include mybsp-hw.scc
3.6. SCC Description File Reference¶
This section provides a brief reference for the commands you can use
within an SCC description file (.scc
):
branch [ref]
: Creates a new branch relative to the current branch (typically${KTYPE}
) using the currently checked-out branch, or “ref” if specified.define
: Defines variables, such as KMACHINE, KTYPE, KARCH, and KFEATURE_DESCRIPTION.include SCC_FILE
: Includes an SCC file in the current file. The file is parsed as if you had inserted it inline.kconf [hardware|non-hardware] CFG_FILE
: Queues a configuration fragment for merging into the final Linux.config
file.git merge GIT_BRANCH
: Merges the feature branch into the current branch.patch PATCH_FILE
: Applies the patch to the current Git branch.
- 1
scc
stands for Series Configuration Control, but the naming has less significance in the current implementation of the tooling than it had in the past. Considerscc
files to be description files.